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Electromagnetic Modeling of Passive Circuit
Elements in MMIC

David C. Chang, Fellow, IEEE, and Jian X. Zheng, Student Member, IEEE

Abstract—A spatial-domain mixed-potential integral equa-
tion method is developed for the analysis of microstrip discon-
tinuities and antennas of arbitrary shape. The algorithm is
based on roof-top basis functions on a rectangular and trian-
gular mixed grid and analytical evaluation of the quadruple
moment integrals involved. The algorithm is successfully im-
plemented into an accurate, efficient and versatile -computer
program. The numerical results agree with the measured ones
very well.

I. INTRODUCTION

T IS COMMONLY accepted that electromagnetic

modeling and CAD are much needed to achieve a first-
pass design for monolithic microwave/millimeter-wave
integrated circuits (MMIC). As the operating frequency
and functionality of these chips continue to increase, our
inability to accurately model the effect of junction discon-
tinuities and parasitic coupling among circuit elements is
quickly becoming a critical bottleneck in ensuing a suc-
cessful design. For operating frequencies beyond 20 GHz
for a typical circuit, traditional quasi-static {1], [2] and
other waveguide methods [3], [4] can no longer be ex-
pected to yield accurate results. In this paper, we shall
present the algorithmic development of a full-wave
method and its application to microstrip structures of gen-
eral shape. We believe that this method is not only com-
putationally efficient, but also yields a physical interpre-
tation compatible to the physical picture as to how the
current waves should behave on a microstrip, particularly
near a junction region.

The algorithm we developed, called P(seudo)-mesh, is

derived from the application of moment method to a
mixed-potential integral equation (MPIE) in spatial do-
main for finding both current and charge distributions on
the microstrip surface. The formulation of the integral
equation itself can be traced back to the well-known work
of Harrington [S]. For planar structures, it has at least two
distinctive advantages when compared with a typical elec-

tric field integral equation (EFIE): one is that the Green’s
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Fig. 1. A microstrip circuit and its gridded structure.

functions involved in the kernel of a MPIE are scalar
functions of electric and magnetic types and they can be
represented typically by one-dimensional Sommerfeld in-
tegrals. The other is that the singularity in the Green’s
functions of both types is of the order of 1/R, where R
= |7 — 7’| is the distance between the source and obser-
vation ‘points; the moment integrals associated with this

singular term are, in fact, known analytically in closed-

form. For a planar structure s as shown in Fig. 1, the
MPIE can be written down as

[otg S ds S ds’ [Gm(?, TE - IF)
4. Js s

- iz GF 7YV -THV - 7(?’)]
ko
= S dsE;(P) « T(P (1)

where G, and G,, are the Green’s functions of electric and
magnetic types; J(') and T(¥) are, respectively, the cur-
rent distribution and the test function, which satisfy the
boundary condition on the structure; k, and p, are, re-
spectively, the wavenumber and permeability in free
space, w is the angular frequency; and E; is the impressed
electric field on the structure. When the source point (x’,
y', z') and the field point (x, y, z) are on the same plane,
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the Green’s functions for microstrip structures are [6]

pr N
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_ 2
Gul(p) = SO 2Jo(0) wotg + u, coth (u,h) .

B * ANug + p,u, tanh (C2) dn 3
Gelp) = So 27o(M) le,uo + u, tanh (o)) [p,uo + u, coth (u,h)] v

where /£ is the thickness of the substrate; €y, and pg p, are
the dielectric permittivity and permeability, respectively;
Jo(Ap) is the zero-th order Bessel function.

p =& —xV+ -y @)
up = VN — 1;
u, = V)\z T €y

The MPIE formulation has been previously adopted by
several authors to model microstrip structures, both in the
form of microstrip patch antennas and microstrip circuit
discontinuities [7]-[8]. For instance, in the works by Wu,
et al. [7], a microstrip structure is divided into two sets
of rectangular cells and pulse basis functions are used to
approximate the charge and current distribution sepa-
rately. Special form of linear ‘‘roof-top’’ basis functions
is used to approximate the current distribution by Mosig
in [8], again for a set of rectangular cells. These methods
obviously are most appropriate when the structure under

" investigation can be, in fact, naturally divided into rec-
tangular cells, but would not be as efficient when cells of
reasonable size (about 20 cells per waveguide wave-
length) cannot be fitted into the boundaries of a structure.
On the other hand, a full implementation of roof-top basis
functions for triangular cells has been reported recently
[15]. The current distribution in a given cell is expressed
in terms of the nodal currents at its vertices. Boundary
conditions at the edge of a microstrip structure are diffi-
cult to enforce in this case, particularly when non-rectan-
gular corners are encountered. Furthermore, it has been
demonstrated in [15] that, for a given structure, the rate
of convergence for such a scheme may depend upon the
particular orientation of the cells selected.

Re (ug) = 0, Im (uy) = 0 (5)
Re (u,) = 0, Im (u,) = 0. (6)

The new algorithm presented here uses a combination

of rectangular and triangular cells in a self-consistent
manner in order to take into account the regularity in shape
over the major portion of a microstrip structure, while still
preserving the flexibility to model junctions of arbitrary
shape locally. It embodies the advantages of the methods
described above but without their respective disadvan-
tages. As it will become clear later, it also has a very
attractive physical interpretation, which in turn lends it-
self naturally to the choice of cells for a given geometry.
Mixed use of rectangular cells and triangular cells and the
derivation can be found in finite element analysis in the
solution of scalar integral or differential equations [16].
Special consideration has to be taken for our solution of
vector current distribution, whose normal component, in-
stead of itself, is continuous on cell boundaries, on a mi-
crostrip structure.

II. Roor-Tor Basis FuncTioNs

As stated in the introduction, what distinguishes the
P-mesh from other similar use of roof-top basis functions
to approximate the current distribution on a microstrip
structure is that we are able to mix rectangular cells and
triangular cells in a self-consistent manner as shown in
Fig. 1. This self-consistency is derived from the obser-
vation that in order to avoid the unphysical occurence of
a §-function charge density in the numerical process, only
the normal component of the current density, but not the
current density itself, is required to be continuous across
a cell boundary. Thus, instead of expressing the current
distribution in terms of vector nodal currents at the three
vertices of a triangular cell [15], we can implement a
modified version in which the current distribution is ex-
pressed in terms of the normal components on the three
sides [17]. In order to solve for the current uniquely, we
further impose an additional requirement that these nor-
mal components have to remain constant across their re-
spective boundaries. In the case of a rectangular cell, two
of the four additional conditions can be shown as redun-
dant and thus the number of equations is again reduced to
six for the six unknown coefficients.

2.1 Roof-Top Functions on Rectangular Cells

Denote the side formed by nodes i and j as side (i, j).
We can express the current density distribution J (x, y) in
rectangle « in terms of the normal component I on the
sides, where the subscript « and the superscripts i, j mean
the side (i, j) of cell a:

4
2 157D, y) ™

i=1

Jox, y) =

where D’ * 1 is the expression for the corresponding roof-
top function to the side (i, i + 1) of cell « (see Fig. 2).
Since a rectangular cell has four vertices or nodes, we can
consider i as a cyclic number so thati =i — 4 fori > 4
and i =i + 4 fori < 1. It is not difficult to show that
DLi*1 which has a magnitude of 1 on side (i, { + 1) and
vanishes on the opposite side, i.e. side (i + 2, { + 3) as
shown in Fig. 2, is given by

D" (x, y)
i — WE —x 1) — e =) — y-1)]
N A1+t
o xR+ ey — P
di—1, ’
(x, y) € rectangle « 8
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Fig. 2. The roof-top functions on a rectangular cell and a triangular cell.

d, = NG, —x)" + =y ©)

1 ox_ ¥y

Ai—l,i,H-l: 1 X Y (10)

L Xiv1 Yisr

and £, § are the unit vectors, respectively, in the x and
y-directions. The divergence of the cell current density
distribution can be written as

4
VT x, ) = ;1 I 10t (x, y) € rectangle
(11)
where
1
S 12
Qa dt—l,i ( )

2.2 Roof-Top Functions on Triangular Cells

Like in the case of a rectangular cell, the current den-
sity on a triangular cell « is given by
3

T y) = 2 I DG, y);
(x, y) € triangle « (13)
3
V- Txy = Z 5410l (x, y) € triangle «
(14)
where the roof-top functions D' ' are now
. d .
DZ’+1(X, ) = — ii+1
Y |At—1,i,l+1|
e = xopE + (y —yi-0f] (45)
; 2d;i 41
Qu= - (16)
[AiZ 1 4]

andi=i—3fori>3,ori=1i+3fori <1.
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Unlike that for a rectangle, the roof-top basis function
for a triangle changes direction at different locations. For
triangle o as shown in Fig. 2, the roof-top function for
side (i, i + 1) is a vector parallel to side (i — 1, i) at node
i, parallel to side i — 1, i + 1) at node (i + 1) and
vanished at node (i — 1). The incoming normal compo-
nent is defined as 1 on side (i, i + 1).

2.3 Pseudo-Mesh Current Distribution Representation

Since for both rectangular and triangular cells we can
now express the current by the normal current density
across the cell boundary and since each of these normal
current densities is assumed to be constant along the
boundary, we can now characterize the current in the cell
by the total current flow into and out of each cell. Topo-
logically, this is the same as replacing a microstrip struc-
ture by equivalent meshes, and the current distribution on
the surface area of a cell by the current flow along cor-
responding meshes as shown in Fig. 3. Unlike a real mesh
structure, however, the net amount of total current flows
into and out of a ‘‘junction’’ does not follow the conven-
tional Kirchhoff’s law. In fact, the difference between the
incoming current and the outgoing current contributes to
the charge distribution on the cell. The requirement that
the normal component of current must vanish at the edges
of a microstrip circuit can be easily implemented by
“‘opening’’ the corresponding meshes connecting the
edges. We should note that the use of triangular ‘‘meshes’”
fully captures the physical phenomenon of a current flow
round the corner of a bend. Thus, one of the advantages
for the P-mesh representation is that it can be constructed
according to the physical intuition a designer has, and such
intuition usually results in fast convergence of the com-
putational process.

2.4 The Global Expression for Current Distribution

In Section II, we have discussed the roof-top basis
functions on individual cells. To complete the P-mesh de-
velopment, we still need to integrate the individual cur-
rent unknown, i.e. I2'*! for the cell « into a global set
of “‘mesh’’ current I,,, m = 1, 2, , M, where M is
the total number of the interconnecting meshes. As we
mentioned earlier, meshes at the boundary of a microstrip
structure are ‘‘disconnected’’ since the normal current at
the edge of a boundary cell is zero. For adjacent cells o
and o’ as shown in Fig. 4, at the common boundary de-
scribable either by («; i, i + 1) or (a'; i', i" + 1), the
unknown current across this boundary is now expressed
in terms of the mesh current ,, so that

I, = I* = -7 (17)

The roof-top basis function corresponding to this un-
known current is

H, = D:it! — D't (18)

It should be noted that D' ! is defined only in cell «,

while D%+ T! is defined only in cell «'. The divergence
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Fig.w3. The current flow in a wire mesh.
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/
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Flg 4. The side current for two adjacent cells.

of the roof-top basis function is
Pm = Qf)z - Qix"
Therefore, the P-mesh current distribution on a struc-
ture can finally be expressed as

M
Jo,y) = 2 LH,, y)

(19)

20)

where M is the number of the unknown interconnecting
‘“meshes.”’

III. MATRIX SOLUTION TO THE MPIE

Using each of the H,(x, y) as the test functions in (1)
and substituting (20) into (1) yield a matrix equation:

M
gl LiZpym = Vs m=1,2,+-+ M 1)
where
Zm,m’ = M S ds S ds,Km,m’(xﬁ ys X’, y,) (22)
47(' Sm Sm’
Km.m’(xa y; X', y/) = Gm(p)I—{m(x’ )’) : I_{m’(x/7 )”)
1
— = G,(p)P,P,, 2

2 (p) (23)
V,= S ds H,(x, y)  E(x, y) (24)
p = —x)+ (y— )P (25)
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The surface integration on s,, has to be carried out over
the two adjacent cells, s, and s, which share a common
boundary or “‘mesh’” m, i.e. m = (a; i, i + 1) = (a'; ',
i’ 4+ 1). The matrix element Z, ,,- consists of quadruple
integrals of the form

S ds S ds'G,, Ap)x*y’x™y";
cell celle’

v, Z20&0=pu+r.u +v =1 (20

For planar structures, the G, . in (26) are Sommerfeld
integrals (see (2) and (3)), and cannot be solved analyt-
ically. It is noticed that the Green’s functions G, ,, are
only one-dimensional functions of p. We can evaluate
them numerically first and then curve-fit them into poly-
nomials over the range of p determined by the maximum
and minimum distance between two cells « and o' [19]:

Np
Gndp) = 21 Cpp’ @7
p=-1
where C ;,"’e are the coefficients from curve-fitting, N, is
the order of the polynomials. With these semi-analytical
expressions of the Green’s functions, the integrals in (26)
are simplified as

13 13 !
Qa, o', p, v, p', v', p)
= S ds s ds'oPx*y'x"*y"™
cella celia’

p:_lyoa"'9Np' (28)

Analytical solutions to the integrals with even p in (28)
can be found in many books on finite elements [20]. But
no formulation has been found to deal with the integrals
with odd p. The integrals with odd p are solved analyti-
cally in [19]. The derivation is very complicated and it
will not be included in this paper.

IV. DE-EMBEDDING OF NETWORK PARAMETERS

In practical applications, we assume a gap voltage
source at the far end of a feed line as the excitation. When
the feed line is long enough, the current distribution is
very close to a sinusoidal function just 0.1 ~ 0.2X, away
from junctions, a measure of current standing wave at each
port leads directly to the scattering matrix of the micro-
strip structure [19]. Thus, unlike those methods which use
the input admittance. or the current at the voltage source
[13], the scattering matrix does not require the knowl-
edge, nor the confusion arising from the definition of the
characteristic impedance of a microstrip line. Several de-
embedding techniques have been developed during the
course of this work, and the most accurate scheme is a
three-point curve-fitting scheme. The current distribution
at three uniformly-spaced points is detected to provide
three equations

z = ~z0:Jy = aexp (vzo) — bexp (— vz9) (29)
z=0J,=a—-b 30)
z = z9: J3 = aexp (—yzg) — b exp (yzo) (31)
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where a and b are the amplitudes of the incident wave and
reflected wave at z = 0, respectively. Summation of (29)
and (31) yields

2(a — b) cosh (yzg) = i + J). (32)
Substituting (30) into (32) gives
J+J
cosh (yzp) = 12—J2~3 (33)

Unique ¥ can be solved from (33) as long as Im (y)zy
< (n/2). Then, the incident and reflected waves can be
obtained from either two of (29), (30) and (31).

The advantage of the de-embedding technique over the’

typical VSWR method used in experimental procedure is
that we don’t need to care about high standing waves since
we always deal with the real part and imaginary part in-
stead of the magnitude of current. This feature makes it
very convenient to solve a multi-port network problem by
just changing the excitation states instead of using
matched loads.

V. NUMERICAL RESULTS

The P-mesh algorithm has been well implemented into

a versatile computer code. It has been used to analyze
various kinds of microstrip circuits and antennas. Before
we proceed to discuss some examples, it is necessary to
define some commonly used notations:

" substrate dielectric constant;

substrate thickness;

microstrip conductivity;

microstrip line width;

waveguide wavelength;

complex propagation constant of a mi-
crostrip line;

number of cells per waveguide wave-
length;

number of cells in transverse direction;

number of cells in a structure.

om
~

o +jB

Zz RFzEas

=z

No obvious convergence but an error bound is ob-

served. To give an idea what the accuracy is of the P-mesh
code with N, = 1 and N,, = 20 when the microstrip width
is less than 5% A,, we list the error bounds for the cases
of large values and small values of the main parameters
in Table I (Note: small values are approximately defined
as |S; ;] < —30dBand 2£§;; < 5°, and large values are
approximately defined as |S;;| >> 0.1 and 2§;; >>
5°). In the following analysis, we always use N, = 1 and
N, = 20.

The first example is the double-stub structure as shown
in Fig. 5. It was previously fabricated and measured for
the purpose of determining the parasitic coupling of two
parallel stubs [21]. Two local minima are observed in the
response of | S, ;| (see Fig. 5). It happens even the stub
separation is as large as \,/4. Since the two stubs are
identical in length, only one minimum is expected if we
break the structure into two single stubs and connect them
without considering the coupling effect. But, when we
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TABLE 1
THE ERROR BOUNDS FOR THE MAIN PARAMETERS
Parameter Small Value Large Value
A <0.5% <0.5%
Resonant frequency <0.5% <0.5%
|81 <2.0dB <1.5%
<8 ; <0.2° <1.5%
w=0.1219 mm
h=0.127 mm
€ =99
0 = 4.55E7 s/m
L=2.921 mm
s =0.7569 mm
Nc=35

-20 -

30

|S21} (dB)

40 e P-mesh

........ BOW [7)

1

BO A —m-—— mutti-port {22] ‘.(.'

............ measured [21]
-80 T T T T !

7 8 9 10 11 12 13
frequency(GHz)

consider it as a four-port network first, and then terminate
the two ports with open-ends, we can always get the dou-
ble minima [23]. Obviously, the double minimum re-
sponse is not caused by the radiation from the open-ends,
but created by the mutual coupling between the two junc-
tions and stubs. We can also see from Fig. 5 that the the-
oretical results agree with the measured ones very well.
There is a 1.5% difference in the resonant frequency be-
tween the numerical and experimental results, but it is
within the fabrication error bound (2%).

The other example is a serpentile line formed by three
cascaded U-bends as shown in Fig. 6. Fig. 7 shows the
frequency responses. It is predicted that | S; ;| < 0.2 and
|S5.1] > 0.966 for a single U-bend, while |S; ;| < 0.05
for a double-bend portion (see Fig. 6). Obviously, the ac-
cumulation of the reflections from the junctions has de-
graded the performance of the circuit. In fact, the circuit
performance is also affected by the mutual coupling in the
circuit. The effect of mutual coupling can easily be dem-
onstrated by comparing the frequency responses of the
three cascaded U-bends calculated in two different ways:
(1) three U-bends analyzed as a whole entity (three
U-bends 1); (2) three U-bends analyzed as the cascading
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W= 0.074mm €y =12.9
L1 =1.000mm h =0.100mm
L2 = 0.166mm o = 5.8E7s/m
Nc = 232

A double
bend portion

Fig. 6. A serpentile line formed by three U-bends.

0.6

IS11]

[S21]

0.7 T T T T

frequency(GHz)
Fig. 7. The frequency responses of the U-bends.

of three individual U-bends (three U-bends 2). A strong
resonance is predicted at 32 GHz resulting from multiple
reflections. It is noticed that there are substantial differ-
ences in the frequency responses of the three U-bends,
especially at the resonance, between the two cases. When
the coupling is included, we have |S; ;|* = 0.31 and
|S,,1]* = 0.57. But when the coupling is omitted, | S, ;|
= 0.19 and | S, ;|* = 0.69 are predicted. Obviously, the
differences account for the mutual coupling among the
U-bends. It has been found that the radiation loss is not
significant in a typical MMIC circuit [18]. The power loss
in this case is 1 — | ) 1|* — | S.4)* = 0.12 and attributes
to the conductor loss resulting from imperfect conductor,
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h =0.100 mm
€ =129

o = 5.8E7 s/m
wil=w2=0.120 mm
w3 =0.070 mm
L1 =0.50C mm
L2 = 0.282 mm
L3 =0.247 mm-
L4 =0.185 mm
L5 = 0.035 mm
s1=0.465 mm
s2 =0.155 mm
Nc = 89

Fig. 8. A complex five-port junction.

0.46

0.44 = ]

0.42 o

0.40 1

o [S21] o [S42
a [S41] & 882
x 1832 o 854}

0.38 -

0.36 4

0.34 T T T T
5 10 15 20 25 30

frequency(GHz)

-60 1

degree

-120 o

-180

frequency(GHz)

Fig. 9. The frequency responses of the five-port junction.

which is modeled as an impedance boundary condition
(the value of the impedance is half of that used in [8]
when the strip thickness is much larger than the skin
depth).

To demonstrate the ability of the P-mesh algorithm and
the code, we provide a brief analysis of a five-port junc-
tion (see Fig. 8). Static theory tells that | S, ;| = |S;,]
and [S; ;| = |Ss2] = |Ss.2|. This is true at low fre-
quency. But the high frequency responses change very
much (see Fig. 9). More complicated circuits can be
solved in the same way.

VI. CoNCLUSIONS

We have demonstrated the P-mesh algorithm and its ap-
plications in the analysis of MMIC circuits. It can also be
applied to analyze microstrip antennas [24]. In fact, al-
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most any planar structures can be analyzed using the
P-mesh algorithm efficiently and accurately. The follow-
ing conclusions appear to be in order for MMIC circuits:

1. The P-mesh algorithm and code are versatile, efﬁ—
cient and accurate.

2. Coupling between elements in a MMIC circuit may
strong enough to change the frequency responses
very much.

3. Accumulation of small reflections from junctions
and bends may result in strong resonances and the
resonances may cause serious power loss in a MMIC
circuit.

4. Metallic loss might be a very important loss factor,
especially when resonances are established.
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